Nash Equilibrium Seeking for Dynamic Systems with Non-Quadratic Payoffs
نویسندگان
چکیده
We consider a general, stable nonlinear dynamic system with N inputs and N outputs, where in the steady state, the output signals represent the non-quadratic payoff functions of a noncooperative game played by the values of the input signals. We introduce a non-model based approach for locally stable convergence to a steady-state Nash equilibrium. In classical game theory algorithms, each player employs the knowledge of the functional form of its payoff and of the other players’ actions, whereas in the proposed algorithm, the players need to measure only their own payoff values. This strategy is based on the so-called “extremum seeking” approach, which has previously been developed for standard optimization problems and employs sinusoidal perturbations to estimate the gradient. Since non-quadratic payoffs create the possibility of multiple, isolated Nash equilibria, our convergence results are local. Specifically, the attainment of any particular Nash equilibrium is assured only for initial conditions in a set around that specific stable Nash equilibrium. Moreover, for non-quadratic payoffs, the convergence to a Nash equilibrium is biased in proportion to the perturbation amplitudes and the payoff functions’ third derivatives. We quantify the size of these residual biases.
منابع مشابه
Nash Equilibrium Strategy for Bi-matrix Games with L-R Fuzzy Payoffs
In this paper, bi-matrix games are investigated based on L-R fuzzy variables. Also, based on the fuzzy max order several models in non-symmetrical L-R fuzzy environment is constructed and the existence condition of Nash equilibrium strategies of the fuzzy bi-matrix games is proposed. At last, based on the Nash equilibrium of crisp parametric bi-matrix games, we obtain the Pareto and weak Pareto...
متن کاملStochastic Nash Equilibrium Seeking for Games with General Nonlinear Payoffs
We introduce a multi-input stochastic extremum seeking algorithm to solve the problem of seeking Nash equilibria for a noncooperative game whose N players seek to maximize their individual payoff functions. The payoff functions are general (not necessarily quadratic), and their forms are not known to the players. Our algorithm is a nonmodel-based approach for asymptotic attainment of the Nash e...
متن کاملA characterization of Nash equilibrium for the games with random payoffs
We consider a two player random bimatrix game where each player is interested in the payoffs which can be obtained with certain confidence. The players’ payoff functions in such game theoretic problems are defined using chance constraints. We consider the case where the entries of each player’s random payoff matrix jointly follow a multivariate elliptically symmetric distribution. We show an eq...
متن کاملBI-MATRIX GAMES WITH INTUITIONISTIC FUZZY GOALS
In this paper, we present an application of intuitionistic fuzzyprogramming to a two person bi-matrix game (pair of payoffs matrices) for thesolution with mixed strategies using linear membership and non-membershipfunctions. We also introduce the intuitionistic fuzzy(IF) goal for a choiceof a strategy in a payoff matrix in order to incorporate ambiguity of humanjudgements; a player wants to max...
متن کاملStochastic Game Theory: Adjustment to Equilibrium Under Noisy Directional Learning
This paper presents a dynamic model in which agents adjust their decisions in the direction of higher payoffs, subject to random error. This process produces a probability distribution of players’ decisions whose evolution over time is determined by the Fokker-Planck equation. The dynamic process is stable for all potential games, a class of payoff structures that includes several widely studie...
متن کامل